If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x-780=0
a = 1; b = -20; c = -780;
Δ = b2-4ac
Δ = -202-4·1·(-780)
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-8\sqrt{55}}{2*1}=\frac{20-8\sqrt{55}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+8\sqrt{55}}{2*1}=\frac{20+8\sqrt{55}}{2} $
| 0.8x0.6=1.6x-1.4 | | 3/4(-8x+20)=-8(-x=3) | | 3/4(-8x+20)=-8(-x=3) | | 3/4(-8x+20)=-8(-x=3) | | 4k+5+9k+6=180 | | 4k+5+9k+6=180 | | 5(2x-4)=200 | | 5(2x-4)=200 | | 5(2x-4)=200 | | 5(2x-4)=200 | | 5(2x-4)=200 | | 5(2x-4)=200 | | 5(2x-4)=200 | | 5(2x-4)=200 | | 5(2x-4)=200 | | 5(2x-4)=200 | | 5(2x-4)=200 | | 2v+2(v+7)=10 | | 2v+2(v+7)=10 | | 2v+2(v+7)=10 | | 2v+2(v+7)=10 | | 52=4x+2 | | 52=4x+2 | | 52=4x+2 | | 52=4x+2 | | 52=4x+2 | | 6n+6+7n-2=180 | | 6n+6+7n-2=180 | | 4y+3=9y−6 | | 4y+3=9y−6 | | 4y+3=9y−6 | | 2v+1+123=180 |